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Abstract—It’s important for understanding brain intelligence 
to investigate how the signal/ information is flown in neuronal 
network. We observed spike trains obtained by one-shot 
electrical stimulation with 8 × 8 multi-electrodes in cultured 
neuronal networks. Each electrode is considered to collect spikes 
from several neurons. We then constructed code flow maps as 
movies of the electrode array to observe the code flow especially 
of “1101” and “1011.” To quantify the flow, we calculated the 
cross-correlations of the maximum direction of the codes with 
lengths less than 8. Normalized cross-correlations in the 
maximum direction were almost constant irrespective of code. 
Thus, the analysis suggested that the local codes for electrode 
flow maintained the code shape to some extent and conveyed 
information in the neural network. Then we made simulation of 
such code flow, and could estimate rough characteristics of 
neurons including refractory period and distribution of 
connection weights between neurons. 
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I. INTRODUCTION 
Spike trains can be observed in a neuronal network. They 

show various aspects of neurons when they fire. It is difficult, 
however, to determine how the spikes are coded. Furthermore, 
neurons work slowly and unreliably compared with artificial 
transistors, presenting a mystery of how a neuronal network 
can work intelligently and reliably. 

     The present methods of spike-coding analyses of 
neuronal networks are (A) spike-coding metrics, (B) 
spatiotemporal coding, (C) synchronous action model, and (D) 
pseudorandom code analysis [1]-[12]. 

From the viewpoint of the coding scheme of spike trains, 
we showed that M-sequence-related codes are detected 
significantly more often than those from time-shuffled trains 
[12]. These may contribute to communication between neurons 
from an analogy of artificial communication systems. 

     In this study, we first analyzed the spike trains of 
cultured neural networks by examining the code of a 
multielectrode array. Next, we visualized the flow of codes that 
were composed of spike sequences. We further quantified the 
flow of the codes that may reflect the flow of information in 
the neural network. 

II. CODE SPECTRUM OF A CULTURED NEURAL NETWORK 
The cell cultures of hippocampal neurons were dissected 

from 18-day-old Wistar rat embryos. Stimulated spikes that 
were produced by bipolar pulses (10 μA, 100 μs × 2) from 
one channel (electrode) were recorded by an extracellular 
recording system with 64 channels (MED64, Alpha MED 
Scientific Inc.) with a sampling frequency of 20 kHz. These 
procedures were basically the same as those described 
previously [12], [13]. Raster plots were obtained by detecting 
the peaks of recorded spike responses with a prespecified 
threshold (5 times the root mean square of4noise, peak-to-peak 

 
Fig. 1 (Upper) Micrograph of cultured hippocampal neurons in 
a microelectrode array. Black rectangles indicate electrodes. 
(Lower) Illustration of a vertical section. E3 means the electrode 
catches spikes of 3 neurons, and so on.   
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value) on each channel with a time bin width of 0.1 ms. 

Because we did not sort the spikes, the spike train from 
each electrode may be composed of spikes from several 
neuronal cells as shown in Fig.1. From these spike trains, we 
confirmed that the M-sequence family occurred significantly 
more often than by chance [12]. In Fig. 2, we show the “1101” 
and “1011” detected codes of sample A as the simplest code 
pair with 1% nominal time accuracy on the 8 × 8 electrode 
arrangement up to 18 ms after the neurons were stimulated. 
Codes “1101” and “1011” are a core part of the reversal 
sequences “1101000” and “1011000” of the representative M-
sequences of “0010111” and “0100111,” respectively. Here, 
codes with bit width more than 0.6 ms are detected as shown in 
Fig.3. 

Fig. 4 shows a code spectrum from the 64 electrodes as an 
average of the 9 trials of sample A, in which the targeted and 
detected codes (sequences) were those having binary “1”s at 
both ends of the code and more than three “1”s, including both 
ends, with lengths less than 8 bits and the sequence between 
the terminal “1”s was an incremental binary number. Then, the 
order of the codes was sorted by the number of “1”s in the 
code. The total number of codes under investigation was 120. 
The length of the train data was 200 ms [2,000 data 
points/(electrode × trial)], which was sampled with a 0.1-ms 
bin-width, and the number of spikes (“1”s) on an electrode was 
an average per trial of 23.2 ± 9.1 in Sample A. The interval-
shuffled trains (Shuf), the electrode-shuffled trains (EShuf) 
among 64 array electrodes, and randomly generated trains 
(Rand), in which six different trains were generated by a 
computer, were also analyzed. Roughly speaking, there were 
two such types of codes with high- and low-appearance rates 
divided between code nos. 21 and 22. The former were codes 
with three bits (“1”), including both end bits, whereas the latter 
were codes with four bits or more.  

Code flow map of Sample A is shown as a movie in Fig.5. 

Cross-correlation to the maximum direction ΦN(C) that is 
normalized by the code length for 14 major codes of sample A 
is shown in Fig.6. 8N and 20N means that of between 8 and 20 
neighbors, respectively, and the “maximum direction” means 
giving the  maximum among 8N or 20N. This suggests that the 
local codes for electrode flow maintained the code shape to 
some extent and conveyed information in the neural network. 

III. SIMULATION OF CODE GENERATION 
We did simulation of generation of spike sequences from 

multi-electrode on 2D mesh type neural network with 31×31 
neurons and weighted connections between 8 neighbor 
neurons. We set 8×8 electrodes on it, each of which gathers 
spikes from 2-9 neurons around it as shown in Fig.7. 

The weight of the network is given by  

wij=F[ (1+a)u-a]   i, j   { 1, 2, …, 31 }, 

where 

F[x] = 1         1≦x 
  = x  -1<x<1 

 
 

Fig.2 Spike trains on 8 × 8 multielectrodes between 0 and 
18 ms (horizontal axis) after the stimulation pulse is given 
at time 0 from the electrode marked with a star. The red 

ellipse shows the code “1011,” and the green ellipse shows 
“1101,” with each having a bit width more than 0.6 ms. 

 
 

Fig.3 Code “1101” detected with bit width 0.6 ms 

 
Fig.4 Spectrum of the detected codes with bit widths of 0.6–2.0 ms. 
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  = -1  x≦-1 

a = positive parameter such that 0<a≦3 
u = random variable with uniform distribution such that  

0≦u<1 
 

By setting parameters of the simulation such as refractory 
period, connection weight distribution, and number of neuron 
cells whose spikes are collected by each electrode. These 
parameters are varied in each simulation as shown later. 
Further, there are another parameters of spontaneous 
fluctuations and fixed intrinsic transmission delay time and 
refractory period to each neuron cell. The variation of intrinsic 

 
Fig.5 Code flow map of Sample B with bit width =0.6-3.0 ms. The serial images are from right to left and top to bottom, and 
the “1011” and “1101” codes are expressed in red and green, respectively. Yellow indicates a mixed code. These spots are 
blurred to smoothen the movies. The frame interval is 5 ms. 

 
Fig. 6 Cross-correlation to the maximum direction ΦN(C) 
that is normalized by the code length for 14 major codes of 
sample A. The p values are calculated from the EShuf/Org 
ratios of each code. 

 
Fig.7 Arrangement of 8×8 multielectrode on simulated 2D 
mesh neural network.   Each electrode catches spikes of 2-9 
neurons.    Connections between 8 neighboring neurons are 
generated randomly with some stochastic haracteristics. 
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transmission delay time of each neuron cell is set one of {-3, -
2, …, +3} with probability 1/7 each, where -3 corresponds -
0.3ms and so on. That of refractory is set one of {-1, 0, +1} 
with probability 1/3 each. The spontaneous fluctuation of 
transmission delay time of each neuron cell is set {-1, 0, +1} 
with probability 1/12, 5/6, and 1/12, respectively, and that of 
refractory period is also set {-1, 0, +1} with probability 1/12, 
5/6, and 1/12, respectively. These additional parameters are set 
fixed through the simulation in this paper. 

Fig.8 shows, as an example, case of code spectrum of 
generated spike sequence in case of Tref (median of refractory 
period) = 7ms and connection weight parameter a=2. 
Practically, the number of neuron cells effecting each electrode 
changes by each electrode. Therefore, real observed code 
spectrum will be mixed according to the distribution of number 
of neuron cells (En) around electrodes. 

Fig.9 shows experimental results of detected average 
number of codes (1-21) from Sample A, B, and C. 

Fig.10-12 show best fit to the number of codes detected in 
spike trains on 2000 time bins of Sample A, B, and C by code 
spectrums of artificially generated spike sequence with various 

Fig. 8 Code spectrum of generated spike sequence in case 
of Tref (median of refractory period)=7ms and connection 
weight parameter a=2. Observed number of codes (Code 
No.1-21) from 64 electrodes between 200ms after 
stimulation, which is sampled with 0.1 ms time bin, that 
is composed of totally 2000 time bins. Bit length of code 
is 0.6-2.0ms. E2 means in case of each electrode catches 
spikes from 2 neuron cells, and so on. 

 
 

Fig. 9 Experimental number of codes detected in spike 
trains expressed with 2000 time bins of 0.1 ms for 3 
Samples. Bit width of code is 0.6-2.0 ms ( 6-20 bins). 
Basically, codes are detected with 1 % of time accuracy, 
though practically several % because of 0.1 ms of bit 
width. 

 
Fig. 10 Best fit to code Spectrum A by simulation spectrum 
set with Tref=6 ms and a=2.5. Distribution of En ( n=2, 3,
…, 9 ) is (1/10, 1/2, 0, 1/20, 0, 0, 0, 7/20). Normalized 

RMS error is 0.179.  

 
Fig. 11 Best fit to code Spectrum B by simulation spectrum 
set with Tref=7 ms and a=2. N Distribution of En ( n=2, 3,
…, 9 ) is (3/10, 1/10, 0, 0, 0, 1/20, 0, 11/20). Normalized 

RMS error is 0.181. 

 
Fig.12 Best fit to code Spectrum C by simulation spectrum 
set with Tref=5 ms and a=3. Distribution of En ( n=2, 3,…, 
9 ) is (1/5, 1/5, 1/10, 0, 0, 0, 0, 1/2). Normalized RMS error 
is 0.149. 
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refractory period Tref and connection weight parameter a, and 
distribution of En. Since it is an inverse problem, and not 
perfect, estimation of neuronal these parameters of Tref, a, and 
En are possible to some extent. 

IV. . DISCUSSION AND CONCLUSION 
To date, the coding mechanisms of neural networks have 

not been solved.  

     We observed spike trains that were produced by one-
shot electrical stimulation of neuronal networks cultured on 8 × 

8 multielectrodes. Each electrode accepted spikes from several 
neurons. We extracted short codes from each electrode and 
obtained a code spectrum. These codes were considered to be 
composed of the neuron circuits around the corresponding 
electrode. However, some codes may be observed by chance. 
To clarify this, we constructed code flow maps as movies of 
the electrode array to observe the code flows of “1101” and 
“1011.” They seemed to flow from electrode to neighboring 
electrode while keeping their shapes to some extent. We 
showed that if we shuffled the spike train interval, they became 
random with no flow. 

     To quantify the flow, we calculated the cross-
correlations to the maximum direction of the codes with 
lengths less than 8. We found that the normalized cross-
correlations were almost constant, irrespective of code. 
Furthermore, we showed that if we shuffled the spike trains in 
interval orders or in electrodes, they became significantly 
small.  

     Thus, the analysis suggested that the local codes around 
the electrode flow maintained the code shape to some extent, 
and they transported the information in the neural network. The 
short code may have been generated by local circuits, including 
feedback loops [12] or various transmission delays [11]. If so, 
the result will help estimate the local circuit shape. The 
analysis proposed here can also be regarded as the code 
decomposition of random-like spike trains with 
nonindependent components (codes). 

 The problem is that the observed code maps have no 
repeatability except for the statistical characteristics as treated 
here or within such short term as 20 ms where PSTH 
(poststimulus time histogram) can be observed with coherency 
between neighboring neurons. Although the period to which 
the repeatability is kept is 15 ms or so after stimulation [14], 
this short term coherency seems enough for such neuronal 
network where various information goes and forth. This issue 
will be discussed in another paper.     

We have visualized information flow in brain by time-shift 
map from cross-correlation of MEG or EEG [15].  It can show 
up to small flow in the brain, and it may be reasonable to 
represent some aspects of logics in the brain as Fig.13. If this is 
the case, higher order brain intelligence process will be 
expressed as Fig.14. However, these are subjects to be attacked 
hereafter. 

 

REFERENCES 
 

[1]  Cessac, B., Paugam-Moisy, H., & Viéville, T. (2010). Overview of facts 
and issues about neural coding by spike. J. Physiol., Paris, 104, (1-2), 5-
18. 

[2] Kliper, O., Horn, D., Quenet, B., & Dror, G. (2004). Analysis of 
spatiotemporal patterns in a model of olfaction. Neurocomputing 5860, 
1027-1032. 

[3] Fujita, K., Kashimori, Y., & Kambara, T. (2007). Spatiotemporal burst 
coding for extracting features of spatiotemporally varying stimuli. Biol. 
Cybern., 97, 293-305. Doi: 10.1007/s00422-007-0175-z.  

[4] Tyukin, I., Tyukina, T., & Leeuwen, C. van (2009). Invariant template 
matching in systems with spatiotemporal coding: A matter of instability. 
Neural Networks, 22, 425-449. 

 
Fig.13 Does the time-shift map correspond to reasoning 

process? 

 
(a) Association process 

 
 

 
(b) Abstraction process 

 
Fig.14 Higher order intelligence by communication or 
informaion flow by spike waves where the spike code is a 
part of them and made visible in this paper. 
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